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Abstract

We present Takin-ADA, which enables real-time
audio-driven animation of individual portraits utilizing
3D implicit keypoints, while also allowing for precise
control over facial expressions for the first time. Takin-
ADA tackles critical issues faced by existing audio-
driven facial animation methods, notably expression
leakage, subtle expression transfer and audio-driven
precision through a two-stage approach. In the first
stage, we ingeniously incorporate a canonical loss and a
landmark-guided loss to enhance the transfer of subtle
expressions while simultaneously mitigating expression
leakage. These advancements significantly elevate the
quality and realism of the generated facial animations.
The second stage employs a diffusion model framework
leveraging HuBERT features, which substantially im-
proves lip-sync accuracy, ensuring a more natural and
synchronized audio-visual experience. Through this
two-stage approach, Takin-ADA not only generates pre-
cise lip movements but also allows flexible control over
expression and head motion parameters, resulting in
more natural and expressive facial animations. Takin-
ADA is capable of generating high-resolution facial an-
imations in real-time, outperforming existing commer-
cial solutions. Extensive experiments demonstrate that
our model significantly surpasses previous methods in
various aspects, including video quality, facial dynamics
realism, and naturalness of head movements.

Keywords: Audio-Driven Portraits Animation, Two-
Stage, 3D Implicit Keypoints, Canonical Loss, Diffusion
Model, expression control

In recent years, portrait animation has emerged as a piv-
otal area of research in computer vision, driven by its wide-
ranging applications in digital human animation, film dub-
bing, and interactive media[34, 23, 59]. The ability to gen-
erate realistic, expressive, and controllable facial anima-
tions from a single image has become increasingly impor-
tant in creating lifelike digital avatars for various applica-

*These authors contributed equally to this work.
†Corresponding author.

tions, including virtual hosts, online education, and digital
human interactions[28, 49, 29].

Existing approaches to portrait animation can be broadly
categorized into two paradigms: audio-driven[40, 34, 59,
57, 60, 61] and video-driven animation[45, 44, 17]. While
these methods have shown promise, they face significant
challenges in achieving precise control over facial expres-
sions, maintaining identity consistency, and generating nat-
ural head movements. Audio-driven methods often struggle
to capture the full spectrum of non-verbal cues, resulting
in animations that lack expressiveness[62, 43, 51]. Video-
driven techniques, while potentially capturing a wider range
of facial dynamics, often suffer from expression leakage,
where the source video’s expressions unduly influence the
animated output[45, 40].

The primary challenge in this field lies in developing
a unified framework that can simultaneously achieve indi-
vidual facial control, handle both audio-driven and video-
driven talking face generation efficiently, and operate in
real-time. Existing models often rely on explicit structural
representations such as blendshapes[6, 13, 33] or 3D Mor-
phable Models (3DMM)[9, 14, 30], which offer constrained
approximations of facial dynamics and fail to capture the
full breadth of human expressiveness.

To address these limitations, we present Takin-ADA
(Audio-Driven Animation), an innovative two-stage frame-
work for real-time audio-driven animation of single-image
portraits with controllable expressions using 3D implicit
keypoints[44]. Our approach tackles the critical issues of
expression leakage, subtle expression transfer, and audio-
driven precision through a carefully designed two-stage
process.

In the first stage, we introduce a novel 3D Implicit Key-
points Framework that effectively disentangles motion and
appearance. This stage employs a standard face mean abso-
lute error (MAE) loss to mitigate expression leakage and a
landmark-based wing loss to enhance the transfer of sub-
tle expressions. These innovations significantly improve
the quality and realism of generated facial animations while
maintaining identity consistency.

The second stage employs an advanced, audio-
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Figure 1. We introduce Takin-ADA, a framework that transforms input audio and a single static portrait into animated talking videos
with naturally flowing movements. Each column of generated results utilizes identical control signals with different and expressions but
incorporates some random variations, demonstrating the diversity of our generated outcomes.

conditioned diffusion model utilizing HuBERT features.
This model not only dramatically improves lip-sync accu-
racy but also allows for flexible control over expression and
head motion parameters. By incorporating a weighted sum
technique, our approach achieves unprecedented accuracy
in lip synchronization, establishing a new benchmark for
realistic speech-driven animations.

A key feature of Takin-ADA is its ability to generate
high-resolution facial animations in real-time. Using na-
tive pytorch inference on an RTX 4090 GPU, our method
achieves the generation of 512×512 resolution videos at up
to 42 FPS, from audio input to final portrait output. This
breakthrough in efficiency opens new possibilities for real-
time digital human interaction and virtual reality applica-
tions.

Through extensive experiments and evaluations, we
demonstrate that Takin-ADA significantly surpasses previ-
ous methods in various aspects, including video quality, fa-
cial dynamics realism, and naturalness of head movements.
Our comprehensive performance enhancements not only
advance the field of digital human technology but also pave
the way for creating more natural and expressive AI-driven

virtual characters.
In summary, Takin-ADA represents a significant step

forward in single-image portrait animation, offering both
technological advancements and practical applicability in
real-world scenarios. By addressing the critical aspects of
audio-driven avatar synthesis, our work provides a solid
foundation for future research in this field and has the po-
tential to profoundly impact various domains, including
human-computer interaction, education, and entertainment.

1. Related Work

1.1. 3D Implicit Keypoints and Disentangled Face Rep-
resentation

The representation of facial images has been extensively
studied by previous works. Traditional methods employ
sparse keypoints[36, 52] or 3D face models[35, 15, 54] to
explicitly characterize facial dynamics and other properties.
However, these approaches often encounter issues such as
inaccurate reconstructions and limited expressive capabili-
ties. Recent advancements have focused on learning disen-
tangled representations within a latent space. A common
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strategy involves separating faces into identity and non-
identity components, which are then recombined across dif-
ferent frames in either 2D or 3D contexts[2, 60, 27, 50,
44, 10]. The primary challenge for these methods lies
in effectively disentangling various factors while maintain-
ing expressive representations of all static and dynamic fa-
cial attributes. Non-diffusion-based models have employed
implicit keypoints as intermediate motion representations,
warping the source portrait with the driving image through
optical flow. Methods such as FOMM[36] approximate lo-
cal motion using first-order Taylor expansion near each key-
point and local affine transformations, whilst MRAA uti-
lizes PCA-based motion estimation to represent articulated
motion[37]. Face vid2vid[44] extended the FOMM frame-
work by introducing 3D implicit keypoints representation,
achieving free-view portrait animation. Despite these ad-
vancements, Face vid2vid has limitations in the transfer of
subtle expressions.

To address these challenges, several methods have been
proposed to improve the warping mechanism and repre-
sentation of complex motions. IWA enhanced the warp-
ing mechanism using cross-modal attention, which can
be extended to multiple source images[31]. TPSM em-
ployed nonlinear thin-plate spline transformations to esti-
mate optical flow more flexibly and handle large-scale mo-
tions more effectively[58]. DaGAN leveraged dense depth
maps to estimate implicit keypoints capturing critical driv-
ing movements[24] . MCNet introduced an identity rep-
resentation conditioned memory compensation network to
mitigate ambiguous generation caused by complex driving
motions[22]. Our work builds upon Face vid2vid[44] by
developing a series of significant enhancements to improve
expression generalization and expressiveness. Our innova-
tive use of 3D implicit keypoints forms the foundation of
the Takin-ADA framework, leading to more accurate and
expressive facial animations.

1.2. Audio-Driven Talking Face Generation

Audio-driven talking face generation has been a long-
standing challenge in computer vision and graphics.
Early efforts primarily focused on synthesizing lip move-
ments from audio signals, leaving other facial attributes
unchanged[39, 4, 34]. Recent advancements have expanded
the scope to include a broader range of facial expressions
and head movements derived from audio inputs. For in-
stance, some methods separate generation targets into cate-
gories such as lip-only 3DMM coefficients, eye blinks, and
head poses, while others decompose lip and non-lip features
on top of expression latents[56]. These approaches typi-
cally regress lip-related representations directly from audio
features and model other attributes probabilistically[51]. In
contrast, our Takin-ADA framework generates comprehen-
sive facial dynamics and head poses from audio along with

other control signals, offering a more holistic and integrated
approach to audio-driven animation.

1.3. Diffusion Models in Facial Animation

Diffusion models[21] have shown remarkable perfor-
mance across various generative tasks, including their ap-
plication as rendering modules in facial animation[12, 18].
While these models often produce high-quality images,
they require extensive parameters and substantial training
data. To enhance generation efficiency, recent approaches
have employed diffusion models for generating motion
representations[1, 19]. Diffusion models excel at address-
ing the one-to-many mapping challenge crucial for speech-
driven generation tasks, where the same audio clip can lead
to different actions across individuals or even within the
same person. The training and inference phases of diffusion
models, which systematically introduce and then remove
noise, allow for the incorporation of controlled variability
during generation. In Takin-ADA, we leverage a state-of-
the-art audio-conditioned diffusion model that integrates fa-
cial expression and head motion parameters, enabling di-
verse and controllable facial animations while maintaining
high accuracy in lip synchronization.

1.4. Real-Time High-Resolution Video Generation

While recent advancements in image and video diffu-
sion techniques have significantly improved talking face
generation[41, 26], their substantial computational de-
mands have limited their practicality for interactive, real-
time systems. Our work addresses this critical gap by
developing a method that delivers high-quality video out-
put while supporting real-time generation. Takin-ADA
achieves the generation of 512×512 resolution videos at up
to 42 FPS, from audio input to final portrait output, repre-
senting a significant advancement in the field of real-time,
high-resolution facial animation.

By addressing these key areas, our Takin-ADA frame-
work represents a comprehensive approach to audio-driven
avatar synthesis, combining advanced 3D implicit key-
point representation, sophisticated audio-conditioned diffu-
sion modeling, and efficient real-time generation capabili-
ties.

2. METHODOLOGY

Figure 2 illustrates the structure of Takin-ADA, which
takes a single face image of any identity and an arbitrary
speech audio clip as input to generate a realistic synthesized
video of the input face speaking the given audio. This sec-
tion elaborates on our method in detail. We start with a brief
overview of the Takin-ADA framework. Next, we describe
our meticulously designed approach for constructing the la-
tent space of the face. Finally, we introduce our compre-
hensive system for generating dynamic facial movements.

3
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Figure 2. Illustration of our proposed Takin-ADA. The framework comprises two primary components: (1) a representation learning
module for extracting expressive and disentangled facial latent representations, and (2) a sequence generation module that synthesizes
motion sequences based on audio input. The first component focuses on learning robust motion representations through the utilization
of canonical keypoint loss and landmark guidance. Subsequently, these learned motion representations serve as input for the second
component, enabling further audio-drive facial image generation and manipulation

2.1. Takin-ADA Framework

Rather than directly generating video frames, we pro-
duce holistic facial dynamics and head motion in latent
space, conditioned on audio and other signals. These mo-
tion latent codes are then used by a face decoder to cre-
ate video frames, incorporating appearance and identity fea-
tures extracted from the input image by a face encoder. As
illustrated in Figure 2, Takin-ADA encompasses two key
components:

• a facial motion representation system capable of cap-
turing universal facial dynamics.

• a face latent generation using user-controlled driving
signal to produce the synthesised talking face video.

2.2. Expressive and Disentangled Face Latent Space
Construction

In the first-stage, to build a face latent space with high
degrees of expressiveness and disentanglement, our ap-
proach utilizes a corpus of unlabeled talking face videos in a
self-supervised image animation framework which employs
a source image Is and a target image It from the same video
clip, where Is provides identity information, It delivers mo-
tion details. The primary aim of our system is to reconstruct

It. We choose face vid2vid[44] as our base model to get fa-
cial motion latent. Compared to extant facial motion repre-
sentation methodologies, including blendshapes, landmark
coefficients, 2D latent and 3D Morphable Models (3DMM),
the trainable latent 3D keypoints demonstrate substantial
superiority in capturing nuanced emotional states and sub-
tle facial deformations, thus providing a more sensitive and
precise framework for facial animation.These 3D keypoints
can be divided into two categories: one that captures fa-
cial expressions and another represents an individual’s ge-
ometric signature which we called canonical volume. The
3D appearance feature volume surpassing 2D feature maps
at detailing appearance. Additionally, explicit 3D feature
warping proves highly effective in modeling head and fa-
cial movements in a 3D space.The source 3D keypoints xs

and the driving 3D keypoints xd are transformed as follows:{
xs = xc,sRs + δs + ts,

xd = xc,sRd + δd + td,

where xs and xd are the source and driving 3D implicit key-
points, respectively, and xc,srepresents the canonical key-
points of the source image. The source and driving poses
are Rs and Rd, the expression deformations are δs and δd,
and the translations are ts and td .
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Significantly, we introduce a suite of pivotal advance-
ments in latent 3D keypoint technology, encompassing
canonical volume representation and landmark-guided op-
timization.

Canonical Keypoints. Although the canonical volume
in Takin-ADA was designed to exclude facial expression
details, we discovered that the generated expression is heav-
ily influenced by the source image, indicating that informa-
tion leakage affects image synthesis.Thus, a more neutral
canonical volume enhances both tractability and effective-
ness in expression translation tasks. To address this prob-
lem, we propose matching canonical keypoints from differ-
ent images of the same person during training, using the
following loss function:

Lcanonical =
1

N

N∑
1

(LHuber(xcsi , xcsj )) (1)

where xcsi and xcsj are the canonical keypoints derived
from distinct images depicting the same individual. The
loss serves to maintain the stability and expression-
invariance of the canonical volume, which is paramount for
the accurate translation of intense facial expressions.

Landmark Guidance. The original face vid2vid ap-
proach [44] appears to have limitations in vividly animat-
ing subtle facial expressions. We posit that these shortcom-
ings primarily stem from the inherent challenges of learn-
ing nuanced facial expressions through unsupervised meth-
ods.Drawing inspiration from [17], we introduce 2D land-
marks that capture micro-expressions, using them to guide
and optimize the learning of implicit points. The landmark-
guided loss Lland is formulated as follows:

Llandmark =
1

2N

N∑
1

(LHuber(li, xs,i,:2)+LHuber(li, xd,i,:2))

(2)
where N is the number of selected landmarks, xs,i,:2 and
xd,i,:2 denote the first two spatial dimensions of the implicit
keypoints for source and driving image respectively,Huber
loss is adopted following [5].

2.3. Emotional Holistic Facial Motion Generation

After completing the training of the motion encoder and
image renderer, we freeze these models and move on to the
second phase, which is driven by audio to produce mo-
tion conditioned on the audio input. Crucially, we con-
sider holistic facial dynamics generation, where our learned
latent codes represent all facial movements such as lip
motion, expression, and eye gaze and blinking. Specifi-
cally, we employ a combination of diffusion and condition:
the diffusion learns a more accurate distribution of motion
data, while the emotion condition primarily facilitates at-
tribute manipulation.The trained generative model gener-

ates videos that synchronize with the speech signal or other
control signals to animate a source image Is.

Diffusion formulation. Specifically, we employ a multi-
layer Conformer[16] for our sequence generation task. Dif-
fusion models utilize two Markov chains: the forward chain
progressively adds Gaussian noise to the target data, while
the reverse chain iteratively restores the raw signal from
this noise. During training, we integrate the diffusion pro-
cess, where the noising phase gradually transforms clean
Motion Latents M into Gaussian noise MT over a series of
denoising steps. Conversely, the denoising phase systemati-
cally removes noise from the Gaussian noise[21], ultimately
yielding clean Motion Latents. This iterative process better
captures the distribution of motion, enhancing the diversity
of the generated results.

Ldiff = Et,M,ε[∥ε− ε̂t(Mt, t, C)∥2] (3)

Weighted Sum. To enhance the robustness of the audio
encoder, we employ a novel approach that retrieves the au-
dio latent code through a weighted summation of all layers
within the self-supervised models. This methodology di-
verges from the conventional Mel-based feature representa-
tion, thereby conferring enhanced language flexibility to the
system. This approach ensures that the DDIM [38] gener-
ates deterministic and consistent outcomes, thus bolstering
the reliability and reproducibility of the results.

Emotion Condition. To achieve better performance, we
also incorporate emotional condition into the Conformer to
enhance facial expressions. Motivated by the observation
that variations in facial expressions in a video sequence are
generally less frequent than other types of motion changes,
we define a window of size K around Id and average the
K extracted expression features to obtain a refined expres-
sion feature. This clean expression feature is then com-
bined with the extracted mouth and pose features as input
to the generator model. During the inference phase, we can
generate videos exhibiting diverse emotional states by as-
signing different affective vectors to the same audio input.
This approach enables the production of emotionally var-
ied outputs from a single audio source. Furthermore, we
can leverage the emotional content inherent in the audio
to generate videos with enhanced emotional controllability.
This method allows for a more nuanced and precise manip-
ulation of the emotional characteristics in the synthesized
video output.

3. Experiments

3.1. Experiment Settings

As shown in Table 1, we first give a brief summary
of the key features of the existing methods.Next, we give
an overview of the implementation details, dataset, bench-
marks, and baselines used in the experiments. Then, we
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Method Head Motion Emotion HD Real Time
MakeItTalk[62] ✗ ✗ ✗ ✗

SadTalker[56] ✓ ✗ ✗ ✗

IP LAP[54] ✗ ✗ ✗ ✗

AniTalker[28] ✓ ✗ ✗ ✓

EDTalk[40] ✓ ✓ ✗ ✓

EchoMimic[7] ✗ ✗ ✓ ✗

Takin-ADA ✓ ✓ ✓ ✓
Table 1. Summary of Different Portrait Animation Methods

present the experimental results on video-driven methods
both self-reenactment and cross-reenactment, and audio-
driven methods followed by an ablation study to validate the
effectiveness of the proposed calonical keypoint and land-
mark gudiance.

Implementation Details. The first training phase was
conducted using a cluster of eight NVIDIA A800 GPUs
over a 8-day period, with models initialized from scratch.
Input images were preprocessed through alignment and
cropping to a standardized 256×256 pixel resolution. We
implemented a batch size of 104 to optimize computational
efficiency, while the output resolution was set at 512×512
pixels. We follow Face Vid2Vid [44] to use implicit key-
points equivariance loss LE , keypoint prior loss LL, head
pose loss LH , and deformation prior loss L∆. To further
improve the expression disentanglement, we apply Canon-
ical Keypoints losses and Landmark Guidance losses, de-
noted as Lcanonical and Llandmark. To further improve the tex-
ture quality, we also apply perceptual and GAN losses on
the global region of the input image fine-tuned from Live-
Portrait model. In the second phase, the speech encoder and
the Motion Generator utilize a four-layer and an eight-layer
conformer architecture, respectively, inspired by [11]. This
architecture integrates the conformer structure and relative
positional encoding [8, 16]. A pre-trained HuBERT-large
model [25] serves as the audio feature encoder, incorporat-
ing a downsampling layer to adjust the audio sampling rate
from 50 Hz to 25 Hz to synchronize with the video frame
rate. The training of the audio generation process spans 125
frames (5 seconds). Detailed implementation specifics and
model structures are further elaborated in the supplemen-
tary materials.

Dataset. Our study employs three distinct datasets:
VoxCeleb[32], HDTF[57], and MEAD[42]. To ensure con-
sistency in data processing, we retrieved the original video
files from these sources and implemented a standardized
processing methodology across all datasets. Furthermore,
we augmented our research with a substantial collection
of 4K-resolution portrait videos, comprising approximately
200 hours of talking head footage. In preprocessing this
additional data, we segmented extended video sequences
into clips not exceeding 30 seconds in duration. To main-

tain data integrity and focus, we utilized face tracking and
recognition technologies to ensure that each clip contains
footage of only a single individual. This approach enhances
the dataset’s suitability for our research objectives and fa-
cilitates more accurate analysis.

Benchmarks. To quantitatively measure the visual qual-
ity, we figure up the Peak Signal-to-Noise Ratio (PSNR),
Structure SIMilarity (SSIM) and Learned Perceptual Image
Patch Similarity (LPIPS) for the generated videos[47, 55].
Following Wav2Lip[34], Lip-sync Distance (LSE-D) is ap-
plied to measure the audiovisual synchronization. For as-
sessing reenactment quality, we employ various metrics in-
cluding the Frechet Inception Distance (FID) to measure
the distributional discrepancy between synthetic and real
images[20]. Cosine similarity (CSIM) from a face recog-
nition network quantifies the identity preservation in gener-
ated images[3] and Structural Similarity Index (SSIM)[46] .
Regarding subjective metrics, we employ the Mean Opinion
Score (MOS) as our metric, with 35 participants rating our
method based on Lip-sync(LS), Naturalness(N), Resolo-
tion(R), and Expression Transfer(ET) .

3.2. Summary of the portrait animation methods

Table 1 summarizes the key features of existing meth-
ods in terms of high-quality output (HD), real-time perfor-
mance, and fine-grained control over different aspects, in-
cluding head motion and emotion. While other approaches
excel in some areas, our method uniquely possesses all
these desirable characteristics. This comprehensive capa-
bility is made possible by our sophisticated universal mo-
tion representation, which enables us to balance quality, ef-
ficiency, and control effectively. Our approach thus repre-
sents a significant advancement in speech-driven facial ani-
mation technology, offering a solution that doesn’t compro-
mise on any front.

3.3. Video-driven methods

Quantitative Results. We benchmarked our approach
against several leading face reenactment methods, all em-
ploying variations of self-supervised learning. The re-
sults are presented in Table 1. Due to the inherent chal-
lenges and the absence of frame-by-frame ground truth in
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Method Self-Reenactment Cross-Reenactment
FID↓ CSIM↑ LPIPS↓ MOS-ET↑ CSIM↑ LPIPS↓ MOS-ET↑

FOMM[36] 32.935 0.825 0.021 2.769 0.174 0.218 1.934
StyleHEAT[50] 33.136 0.522 0.095 2.675 0.244 0.213 1.768
LIA[45] 28.008 0.834 0.021 3.187 0.149 0.216 2.937
FADM[53] 28.981 0.832 0.024 2.763 0.106 0.199 2.268
Face Vid2Vid[44] 28.444 0.831 0.023 3.451 0.144 0.212 2.664
Takin-ADA 27.429 0.948 0.019 3.983 0.261 0.211 3.575

Table 2. Quantitative comparisons for self-reenactment and cross-reenactment methods.

Figure 3. Qualitative comparisons of Cross-reenactment. This task involves transferring actions from a source portrait to a target portrait
to evaluate each algorithm’s ability to separate motion and appearance. The results highlight our method’s superior ability in both motion
transfer and appearance retention, while also excelling in the transfer of subtle micro-expressions and extreme facial expressions.

Cross-Reenactment (using another person’s video for driv-
ing), the overall results tend to be lower compared to Self-
Reenactment (using the current person’s video). In Self-
Reenactment, our algorithm achieved superior results for
image structural metrics such as FID, CSIM, and LPIPS,
validating the effectiveness of our motion representation in
reconstructing images. Specifically, Takin-ADA achieved
a FID score of 27.429, which is notably lower than FOMM
and Vid2Vid, indicating a smaller distributional discrepancy
between generated and real images. Additionally, the CSIM
score of 0.937 surpasses other methods, demonstrating bet-
ter identity preservation. The lowest LPIPS value of 0.019
further confirms the superior visual quality of our gener-
ated results. In the cross-reenactment task, our method
also shows significant advantages, especially in terms of

CSIM and LPIPS metrics. Our system effectively separates
the driving actions and identity features, retaining the tar-
get head movements and expressions while preserving the
source identity. The high MOS-ET score also reflects the
high subjective satisfaction with our method. Takin-ADA
achieved the best performance among all methods, with a
CSIM score of 0.261 and a LPIPS score of 0.211. These
results highlight our algorithm’s outstanding ability to dis-
entangle identity and motion when driving with different
individuals, providing more natural, expressive, and high-
fidelity facial animations.

Qualitative Results. Figure 3 presents a qualitative
comparison of cross-reenactment methods. This task in-
volves transferring actions from a source portrait to a target
portrait to evaluate each algorithm’s ability to separate mo-
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Method Subjective Evaluation Objective Evaluation
MOS-R↑ MOS-N↑ MOS-LS↑ PSNR↑ SSIM↑ FID↓ LSE-D↓

MakeItTalk[62] 2.135 2.822 2.441 26.693 0.762 31.113 10.888
SadTalker[56] 3.783 2.148 3.573 26.105 0.753 32.539 7.748
AniPortrait[48] 3.529 2.329 3.474 25.172 0.731 33.434 7.968
AniTalker[28] 3.956 2.812 3.821 25.387 0.749 29.839 10.171
EDTalk[40] 2.943 3.152 3.752 26.978 0.781 28.043 7.686
Takin-ADA 4.187 3.839 3.887 27.876 0.779 27.803 7.764

Table 3. Quantitative comparisons with previous speech-driven methods.

tion and appearance. From the third row, it is clear that our
method, Takin-ADA, excels in transferring subtle micro-
expressions, effectively capturing and replicating delicate
facial movements. From the fourth row, Takin-ADA also
shows superior performance in handling extreme facial ex-
pressions, maintaining the integrity and authenticity of the
facial features even under challenging conditions. These
results highlight the robustness and effectiveness of Takin-
ADA in both subtle and extreme expression transfer.

3.4. Audio-driven methods

We compare our method against leading speech-driven
approaches, including MakeItTalk[62], SadTalker[56],
AniPortrait[48], AniTalker[28] and EDTalk[40]. Table 3
presents the quantitative results of this comparison. Subjec-
tive evaluations consistently demonstrate that our method
outperforms existing techniques in lip-sync accuracy(MOS-
LS), naturalness(MOS-N), and Resolution(MOS-R), with
particular emphasis on enhanced naturalness of move-
ments. These improvements can be attributed to our so-
phisticated universal motion representation. Notably, our
model demonstrates a superior ability to produce convinc-
ingly synchronized lip movements that accurately match the
given phonetic sounds. Nevertheless, our SSIM[46] and
LSE-D metric exhibits a slight decline compared to EDTalk,
which we attribute to two primary factors: 1) EDTalk [40]
is exclusively trained on lip movements, whereas our model
predicts the full range of facial expressions. 2) the LSE-
D metric emphasizes short-term alignment, 3) the metric
is not utilized as a supervisory signal in our training pro-
cess, thereby failing to sufficiently capture the long-term
information essential for the comprehensibility of gener-
ated videos. This observation is further supported by the
qualitative results presented in Figure 4, which underscore
our model’s capability to produce convincingly synchro-
nized lip movements corresponding to the provided pho-
netic sounds.

Consistency with the longer pronunciation. Figure 4
demonstrates our model’s proficiency in generating highly
synchronized lip movements that correspond accurately to
the given phonetic sounds. This visual representation un-
derscores the model’s capability to create realistic and pre-

cisely timed facial animations that align seamlessly with
spoken language.

Figure 4. Visual comparison of the speech-driven method. Pho-
netic sounds are highlighted in red.

Emotion Control. Figure 5 presents a diverse array
of our generated results, encompassing various emotional
states. These examples vividly demonstrate our generation
model’s proficiency in interpreting emotional signals and
producing talking face animations that closely correspond
to the specified emotional parameters.

Figure 5. Generated results under different emotion offset (happy,
surprised, sad, angry and disgusted, respectively).

The results unequivocally showcase the model’s capacity
to accurately capture and convey a wide spectrum of emo-
tions through the generated facial expressions and move-
ments. This underscores the system’s effectiveness in trans-
lating emotional inputs into visually convincing and emo-
tionally resonant animations.
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3.5. Ablation Study

To further validate the effectiveness of our disentangle-
ment between canonical and landmark information, we con-
ducted an extensive ablation study using various methods.
First, to evaluate the performance of our model without the
canonical loss (Lcanonical), we observed the resulting met-
rics and compared them against a fine-tuned vid2vid base-
line. This comparison, detailed in Table 4, demonstrates
significant improvements across all metrics when either
component is added. The exclusion of Lcanonical resulted
in moderate improvements, with an FID of 27.429, CSIM of
0.948, MOS-ET of 3.983, and PSNR of 24.663. The exclu-
sion of Llandmark yielded better results, achieving an FID
of 61.1, CSIM of 0.69, MOS-ET of 3.6, and PSNR of 29.6.
By incorporating both Lcanonical and Llandmark, our com-
plete method achieved the best results. These results high-
light the powerful synergy of these disentanglement losses,
leading to enhancements in image quality, structural simi-
larity, and expression transfer. Our findings emphasize the
importance of these components in ensuring the motion en-
coder effectively focuses on relevant motion-related infor-
mation, thereby improving the overall performance of our
approach. This analysis is comprehensively demonstrated
in Table 2, reinforcing the significance of disentanglement
methods in achieving superior image re-enactment quality.

Method FID↓ CSIM↑ MOS-ET↑ PSNR↑
Face Vid2Vid fine-tuned 28.444 0.945 3.451 19.235
Ours w/o Lcanonical 28.721 0.947 3.542 22.254
Ours w/o Llandmark 27.828 0.948 3.662 23.619
Ours 27.429 0.948 3.983 24.663

Table 4. Quantitative comparisons of disentanglement methods in
Self-Reenactment setting

4. CONCLUSIONS

In this paper, we introduced Takin-ADA, an innovative
two-stage framework for real-time audio-driven animation
of single-image portraits with controllable expressions us-
ing 3D implicit keypoints. Our approach addresses critical
limitations in existing methods, such as expression leakage,
subtle expression transfer, and audio-driven precision. By
employing a canonical loss and a landmark-guided loss to
enhance the transfer of subtle expressions while simultane-
ously mitigating expression leakage in the first stage, and a
state-of-the-art audio-conditioned diffusion model based on
HuBERT features in the second stage, Takin-ADA achieves
high-resolution (512×512) facial animations at up to 42 FPS
on an RTX 4090 GPU. Our extensive evaluations demon-
strate that Takin-ADA consistently outperforms existing so-
lutions in video quality, facial dynamics realism, and natu-
ralness of head movements.

While Takin-ADA shows significant advancements, it
has some limitations, including minor inconsistencies in

complex backgrounds and edge blurring during extreme fa-
cial shifts. Future work will focus on improving the tem-
poral coherence and rendering quality of the framework.
Takin-ADA sets a new benchmark in single-image portrait
animation, opening new possibilities for applications like
virtual hosts, online education, and digital human interac-
tions, and providing a robust foundation for future research
in this evolving field.
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