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Abstract

With the advent of the big data and large language model era, zero-shot person-
alized rapid customization has emerged as a significant trend. In this report, we
introduce Takin AudioLLM, a series of techniques and models, mainly including
Takin TTS, Takin VC, and Takin Morphing, specifically designed for audiobook
production. These models are capable of zero-shot speech production, generat-
ing high-quality speech that is nearly indistinguishable from real human speech
and facilitating individuals to customize the speech content according to their
own needs. Specifically, we first introduce Takin TTS, a neural codec language
model that builds upon an enhanced neural speech codec and a multi-task train-
ing framework, capable of generating high-fidelity natural speech in a zero-shot
way. For Takin VC, we advocate an effective content and timbre joint modeling
approach to improve the speaker similarity, while advocating for a conditional
flow matching based decoder to further enhance its naturalness and expressive-
ness. Last, we propose the Takin Morphing system with highly decoupled and
advanced timbre and prosody modeling approaches, which enables individuals to
customize speech production with their preferred timbre and prosody in a precise
and controllable manner. Extensive experiments validate the effectiveness and
robustness of our Takin AudioLLM series models. For detailed demos, please refer
tohttps://everest-ai.github.io/takinaudiollm/.

1 Introduction

Recent advancements in large language models (LLMs) [1, 2, 3, 4], neural codecs [5, 6, 7, 8], and
diffusion and flow models [9, 10, 11, 12, 13] have led to significant progress in the fields of zero-shot
text-to-speech synthesis (TTS) [14, 15, 16, 17, 18], voice conversion (VC) [19, 20, 21, 22], and
related areas. These innovations enable the synthesis of high-quality speech without extensive model
training, thereby enhancing the accessibility and scalability of these technologies and fostering more
natural and immersive user interactions.

In this context, to drive innovation and support audiobook production, we propose Takin Audi-
oLLM—a series of models designed to allow users to customize speech content according to their
specific needs while generating high-quality, near-human-like speech with exceptional naturalness and
expressiveness. The Takin AudioLLM series comprises Takin TTS, Takin VC and Takin Morphing.

Firstly, inspired by the powerful contextual learning capabilities of LLMs, we present Takin TTS—a
robust and effective neural codec language model for audiobook production. Takin TTS incorporates
a high-fidelity, low-bandwidth neural speech codec based on efficient disentangled prompt encoders,
which reduces modality heterogeneity between text and audio, thereby enhancing the LM’s prediction
accuracy. We introduce a five-stage multi-task training strategy that significantly improves overall LM
performance, ensuring robustness and effectiveness in complex real-world scenarios. Additionally, we
employ a latent diffusion model and Vocoder for token-to-speech synthesis, further improving speech
quality and naturalness. Consequently, Takin TTS excels in generating high-quality, natural-sounding
speech for various applications, from interactive voice response systems to sophisticated text-to-
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speech frameworks. This approach greatly enhances user experience and demonstrates substantial
potential in advancing generative speech modeling technology.

Secondly, Takin-VC employs a joint modeling approach that integrates timbre features with both
supervised and self-supervised content representations to enhance speaker similarity and intelligibility.
This design allows Takin-VC to effectively capture and reproduce the nuanced characteristics of
various speakers, ensuring that converted voices closely resemble the target speakers. Furthermore,
to refine speech quality and naturalness, we incorporate an efficient conditional flow matching-based
decoder. This advanced decoder optimizes the alignment between timbre and content features,
leading to more accurate and natural voice conversion. In this way, Takin-VC provides a powerful and
versatile tool for voice conversion applications, excelling in producing high-fidelity, natural-sounding
voice conversions suitable for audiobook production. It significantly enhances user experience and
demonstrates its potential to advance the field of voice conversion technology.

Finally, Takin Morphing introduces an attention mechanism-based multi-reference timbre encoder
for precise and detailed timbre modeling. Additionally, a language model (LM)-based prosody
encoder is employed to capture prosody representations that align with timbres for unseen speakers
in an auto-regressive manner. To further enhance waveform quality, we advocate a two-stage
information-flow-based training method. Through these innovations, Takin Morphing enables users
to utilize timbres from various unseen speakers and combine them with preferred prosody styles, thus
generating personalized audiobooks with a high degree of control. This capability meets the demands
of diverse speech synthesis applications, from entertainment and education to commercial contexts,
offering a more natural and enriched auditory experience.

Overall, Takin AudioLLM represents a significant advancement in zero-shot speech production
technology. By leveraging the sophisticated capabilities of Takin TTS, Takin VC, and Takin Morphing,
this series not only advances the state-of-the-art in speech synthesis but also addresses the growing
demand for personalized audiobook production, enabling users to tailor speech generation precisely
to their requirements.

2 Takin TTS

2.1 Overview
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Figure 1: An overview of Takin TTS workflow

As shown in Figure 1, we take Takin TTS as an example to introduce the construction scheme of this
series of large models, primarily including the construction of large-scale datasets, model training
for specific tasks, the establishment of evaluation systems for voice generation models, and the
commercialization of applications. Additionally, Figure 2 illustrates the overall training process of
Takin TTS, and the specific training details will be gradually expanded upon as follows.

2.2 Pretrain

We use multimodal data to pretrain the Takin TTS. Specifically, we encode text and audio data
into tokens and input them into the GPT model to learn relevant knowledge. For text data, we
develop an internally developed G2P (Grapheme-to-Phoneme) method. This solution includes a Text
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Figure 2: Overall schematic diagram of Takin TTS.

Normalization (TN) module, a Named Entity Recognition (NER) module, as well as a polyphone
disambiguation module, which can convert text into phonemes and subsequently embed them into the
lexical merge space. For audio data, we train an encodec system with a single codebook to convert
audio content into discrete codec tokens. In this way, the multimodal data can be input into the GPT
model for its understanding.

x̂t = argmax
xt

Pθ(xt | x1, x2, ..., xt−1) (1)

We use the most classic GPT training method, assuming the audio or text sequence is X =
{x1, x2, ..., xt}, with the pretraining objective as shown in equation 1.

2.3 Supervised Fine-tuning (SFT)

Following unsupervised learning on extensive data, our Takin TTS has developed a robust capacity
to comprehend text and audio information. In the subsequent phase, akin to GPT-4 [2], we employ
labeled paired data to train the Takin TTS model for downstream tasks such as TTS and Automatic
Speech Recognition (ASR) [23, 24, 25], thereby enhancing its proficiency in managing text and
speech tasks.

In the TTS task, zero-shot is a quite important capability of applications that requires the model to
synthesize high-quality speech for unseen speakers without collecting their labeled data for training
in advance. In this work, leveraging the ability of neural codec to convert speech into discrete tokens,
the zero-shot TTS task is regarded as a conditional language modeling task to predict discrete codec
tokens autoregressively based on given conditions.

Let D = {Ti, Pi, Si} denotes the training dataset, where Si is the target speech, Ti is the text
description and Pi is prompt audio which is from the same speaker with Si. During the training
process, a set of speech conditions SCi is extracted from prompt audio Pi via acoustic prompt encoder,
the text transcription Ti is converted to a phoneme sequence TPi = {BP,Pi1 , Pi2 , ..., Pim , EP},
and BP stands for the Begin of Phone Sequence, EP stands for the End of Phone, the target speech is
passed to neural codec model to get discrete codec tokens Ci = {Ci1 , Ci2 , ..., Cin}. A start identifier
s and an end identifier e are inserted at the beginning and the end of codec tokens. The input training
sequence is constructed as follows:

[SCi, TPi, S, Ci, E]

As shown in Figure 2, the language model is only trained to predict codec tokens and the end
of sequence token E conditioned on phone sequence TPi and speech conditions SCi, which is

3



formulated as:

P (Ci|S, SCi, TPi) =

n+1∏
t=1

P (Cit |Ci<t, S, SCi, TPi) (2)

where Cn+1 denotes the end of sequence token E. During inference, the language model generates
tokens autoregressively based on given text and reference speech, and fed these tokens to neural
codec model to generate audio.

2.4 Continual Supervised Fine-tuning (CSFT)

While Supervised Fine-Tuning (SFT) has endowed the Takin TTS model with TTS capabilities,
the diverse content standards generated by TTS often lead to more frequent word omissions in
Autoregressive (AR) models compared to Non-Autoregressive (NAR) models during inference
[26, 27]. As a consequence, to enhance the stability of the system’s TTS functionality, further
Continual Supervised Fine-tuning (CSFT) joint with ASR guided training is necessary. In our method,
CSFT primarily consists of two components: Domain-SFT and Speaker-SFT, which will be elaborated
below.

2.4.1 Domain SFT
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Figure 3: LoRAMoE for Domain Fine-tuning

The distribution of speech prosody diverses across various scenarios, for instance, the overall prosody
of reading an audiobook is far different from that of delivering a speech. Since there usually exists an
imbalanced data during pretraining phase, in order to improve the quality and accuracy of generated
speech, Domain SFT is applied to our well fine-tuned models. In this phase, we only select several
thousand hours of high-quality finely labeled domain data and train the propsoed approach using
LoRA [28].

2.4.2 Speaker SFT

To ensure that the narration of high-quality audiobooks sounds more natural and aligns closely with
the original speaker’s performance style, we have further introduced the Speaker SFT Phase. In this
section, we continue to use the LoRA training method. The difference here is that we freeze most of
the GPT parameters to retain the model’s foundational knowledge and update the parameters of the
Acoustic Prompt Encoder with the Input and Output Embedding Layer parts of GPT.
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Figure 4: LoRAMoE for Speaker Fine-tuning

2.4.3 ASR guided Joint Training

To improve the accuracy of the model’s output content, we incorporate ASR guidance into the model
training during the finetuning process. The sequences output by GPT are fed into a codec decoder
to be restored to wav format. To ensure gradient propagation and training speed, the generated wav
is input into the whisper model, and its output is compared with the annotations to calculate the
cross-entropy loss.

2.4.4 Reinforcement Learning

Despite the fact that the model after CSFT Process performs quite well, even surpassing human
rendition levels for certain sentences by some speakers, it still faces issues with varying effectiveness
among different speakers for the same text, as well as discrepancies between human and machine
aesthetics. To make the generated content as closely aligned with human preferences as possible, we
have introduced the concept of our RL (Reinforcement Learning) method. As shown in Figure 2, The
RL is placed in the end of the whole diagram of Takin TTS to further improve the performance by
aligning the model with human preference.

Currently RL methods [29, 30, 31, 32], follow a Sampling-human-annotating-learning pipeline, in
which human evaluation is applied to model-generated outputs to ensure the model learns to align
with subjective human preferences. The pipeline works also in speech generation task [33]. However
the human ratings is labour dmanded, there are also some works studying to [34, 35] use objective
metrics to replace human ratings, in order to facilitate the obtaining of preference data pairs. We
also explore leveraging the human-rating only pipeline to combine it with a set of objective metrics
which partly indicate human preferences, namely the Sampling-human&machine-annotating-learning
pipeline.
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2.4.5 Instruction Style Control

In AudioLLM paradigm, the common method of controlling speech style involves selecting different
audio prompts, which generally incorporate both speaker identity and style information simultane-
ously. To explore the full potential of controllability, we propose TakinTTS-Instruct to synthesize
speech with various styles and emotions, including rhythm, pitch, paralinguistics, etc., using natural
language as style prompts which is more user-friendly than the base model of Takin TTS and could
decouple the speaker and style in synthesis.

The lower-left part of Figure 2 prominently displays the core structure of TakinTTS-Instruct. To
be specific, a robust pre-trained speaker verification system [36] is employed to provide additional
voice characteristics, enhancing the similarity between the synthesized voice and the target speaker.
Moreover, unlike previous speech emotion or speaking state recognition tasks [37, 38, 39, 40], in order
to control the emotions of the generated speeches, speaking states, or other linguistic dimensions in a
more user-friendly fashion, we implement a predictor that detects and classifies emotions or different
speaker states in spoken language and subsequently outputs its corresponding natural language
description. Furthermore, these descriptions will be parsed by SimBERT[41] into an embedding form
to be incorporated into the model training.

3 Takin VC

In addition to TTS, another widely used technology in the audiobook business is VC technology.
Here, we propose a novel and effective zero-shot VC approach based on DDPM or CFM. Similar to
the usage conditions of TTS technology, it can achieve high-expressiveness timbre conversion with
only 5-10 seconds of unseen audio.

3.1 VC Training

The input of Takin VC is composed of two parts: Phonetic Posteriorgrams (PPG), utilizing the output
features of HybridFormer [42] in this case, and a truncated prompt mel fragment. For the output,
Takin VC offers two alternatives: it can either produce mel spectrograms, which are subsequently
converted to audio samples through a vocoder, or directly generate audio samples.
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Cross-Attention 
Layers

Vocoder

PPG 
Model

Q

+
K/V

VP Model

Prompt Mel

D
D
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/CFM

M
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Figure 5: The Structure of Takin VC.

To elaborate, our Takin VC system mainly consists of three components: the PPG model is used
to extract the decoupled content information of the input audio, and the memory augmented cross-
attention based timbre modeling mechanism is used to re-populate the timbre information. Finally,
we use the way of DDPM / Flow Matching to restore the converted spectral information and employ
a HiFi-Gan vocoder to render it into the converted audio. Specifically, the PPG Model used here is
a pre-trained Hybridformer model. As for the voiceprint model, we use a pre-trained CAM++[36]
model from modelscope. The target features of DDPM / CFM here use a 129-dimensional mel-
filterbank, and the prompt mel does the same. Due to the difficulty of collecting VC data from real
world, similar to other VC system, we directly use normal speech data by cut of single speaker, and
randomly select a segment as the prompt mel. We trained our models on 500k hours of data. During
training , the PPG model and voiceprint model are frozen and only update the memory augmented
timbre blocks and DDPM / CFM model are updated.
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3.2 VC CSFT

Similar to parts of the Takin TTS, after pre-training on a large amount of data, fine-tuning with a
small amount of high-quality data can enhance the model’s performance. Furthermore, although
the timbre information retained in the PPG feature is already minimal, there are still minor timbre
leakage issues, resulting in suboptimal timbre conversion similarity in some cases. Therefore, we
employed the TTS system to improve the performance in this regard. Due to the duration control
issues, we used a traditional TTS system here to generate a small amount of parallel data, which is
used to better guide the model in understanding the speech conversion task.

4 Takin Morphing

Audio Style Transfer is an important application in the field of audiobook production, which involves
transforming styles while retaining the speaker’s vocal timbre, thereby lowering the barrier to
becoming a professional broadcaster. By using this technology, works by enthusiasts who are not
yet proficient in certain broadcasting techniques can be transformed to have the style of professional
broadcasters, thereby improving the quality of the works to some extent. Alternatively, it can serve as
an auxiliary in teaching, guiding enthusiasts to develop their own unique broadcasting styles. Here,
we introduce the Takin Morphing technology, which utilizes the form of DDPM to achieve style and
rhythm transfer while maintaining the speaker’s vocal timbre.
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Figure 6: Training Structure of Takin Morphing.

As shown in the Figure 6, the input to the model is the Phone sequence. After feeding it into the
Multi-Reference Timbre Encoder (MRTE) layer [43], we obtain a hidden matrix containing content
and timbre information. This matrix, along with prosodic features, is sent into the Decoder model
to restore the mel-like features. The prosodic features are VQ vectors of low-frequency Mel. Here,
we replaced the commonly used mel-spectral features with wavlm features because our experiments
show that wavlm features contains more expressive information than Mel Spectrum.
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5 Experiments

5.1 Takin TTS Settings

Experimental Datasets To train and evaluate Takin TTS, We build a large multilingual base dataset
for pretraining and 1st round of SFT training. To evaluate CSFT and RL training, several carefully
human labeled datasets are built which including domain datasets and speaker datasets. The datasets
are depicted as follows:

• Base TTS Dataset: In-house dataset including over 1M hours of speech data, which may
include some labelling errors.

• Domain TTS Dataset: The domain dataset is of high-quality dataset with all the transcripts
manually checked. There are two domains exist in the domain dataset which are audiobook
and podcast. There is around 1000 hours for each domain used for Domain SFT. For speech
data of each domain, 5% of the whole dataset is held out for test purpose and we make sure
the held out test set does not have speaker overlap with the train set.

• Speaker TTS Dataset: To conduct speaker SFT based on the result of Domain SFT, a small
Speaker TTS Dataset is constructed by selecting two audiobook-domain speakers and two
podcast-domain speakers from our in-house dastaset. There is 1-hour speech data for each
speaker, and likewise their transcripts are carefully labeled. For each speaker, 5% of speech
data is held out as test set.

Evaluation Metrics To conduct objective evaluations, We employ the Phoneme Error Rate (PER)
and Speaker Similarity (SIM) metrics. For PER, we pick Whisper-large-v3 [44] as the ASR model to
conduct the PER test, While for SIM, we use CAM++ on the speaker verification task [45] to obtain
speaker embeddings for calculating the cosine similarity of speech samples of each test utterance
against reference clips. For subjective evaluations, We employ the Mean Opinion Scores (MOS) by
rating different speech samples of the same content by human evaluators. The scores vary from 1
to 5 and the higher score indicates better speech quality. Besides, Bad Case Rate (BCR) is used to
evaluate the overall stability of our models in RL experiments. Equation 3 is defined to compute BCR,
in which B is the number of bad cases. To count the number of bad cases, We count the occurances
of three types of bad cases covering prosody, pronunciation and missing or extra speech.

BCR =
B

100
(3)

5.1.1 Pretraining

Figure 7: Training Loss of Phone and Acoustic Tokens.

As shown in the Figure 7, during the pretraining process, the phone loss can converge quickly. In
comparison, the learning of acoustic tokens is slower, seemingly because the acoustic tokens contain
more information and are more difficult to learn. Although we believe that if one only wants to
perform TTS tasks, pre-training may not be a necessary option, and starting from the CSFT stage
can also train a model with very good results. However, if you want the model to expand other
multimodal capabilities, such as GPT-4o, pretraining is also a good choice.
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5.1.2 CSFT on Takin TTS

After pretraining, Talkin TTS model is finetuned with Base TTS dataset to align the model to TTS
task, namely SFT. However, this finetuned model is not prepared for real applications in terms of its
stability and expressiveness as mentioned in section 2.4. CSFT is key to getting a stable model and
enhance its expressiveness, especially when generating speech of a specific speaker. This section is
mainly focused on the experiments of two types of CSFT which are domain SFT and speaker SFT.

Table 1: Evaluating results of domain SFT
Model PER(↓) SIM(↑) MOS(↑)

w/o domain SFT 5.6 0.70 4.12 ± 0.09
w/ domain SFT (cross-domain test) 3.3 0.69 4.18 ± 0.07
w/ domain SFT (in-domain test) 2.8 0.71 4.29 ± 0.06

Domain SFT, unlike the full-parameter fine-tuning of CSFT, trains extra LoRA parameters of Takin
TTS model, keeping backbone frozen. Domain Dataset is used to do domain SFT on audiobook and
podcast domains respectively, which consequently results in two separate LoRA models of those two
domains. The experimental results are demonstrated in Table 1, the model after SFT is denoted by
w/o domain SFT, and w/ domain SFT denotes the SFT model further finetuned with domain SFT.
All the objective metrics are computed in a zero-shot setup using test set in Domain TTS Dataset.
To conduct subjective evaluation, 8 males and 8 females are randomly selected from the test set to
synthesize speech, with 30 subjects participated in to rate scores from 1 to 5. We not only compare
the model with and without domain SFT, but also study the influence of domain match between
training and inference. cross-domain test labels testing a model after domain SFT with mismatched
domain data. e.g., testing the model after audiobook domain SFT with podcast test data. On the
contrary, in-domain test denotes the testing scenario with matched domain data. The Table 1 shows
the PER of the model with domain SFT is superior to that without domain SFT, as well as the MOS
score. For the zero-shot speaker similarity, both models with and without domain SFT share a similar
SIM score. We also find that the domain consistency of training and inference further boosts the
performance of the generated speech from both subjective and objective perspectives.

Table 2: Evaluating results of Speaker SFT
Model PER(↓) SIM(↑) MOS(↑)

domain SFT 1.91 0.70 4.23 ± 0.06
speaker SFT 1.13 0.81 4.35 ± 0.08

domain SFT + speaker SFT 0.89 0.82 4.46 ± 0.07

Speaker SFT also trains extra LoRA parameters of Takin TTS model and can be stacked onto the
model after Domain SFT. We conduct the experiment of speaker SFT based on Speaker TTS Dataset
and all the evaluations are based on the test data of the four speakers in that dataset. In the experiment
of speaker SFT, we study the influence of stacking domain SFT and speaker SFT, by comparing it
with the models only with domain SFT and the ones with only speaker SFT.

As illustrated in Table 2, we use the same evaluations as that in domain SFT experiments. the speaker
SFT obviously plays the most important part to improve the performance of a specific speaker on
both objective and subjective perspectives. However, just speaker SFT alone does not achieve the
best results. We suspect that is due to the model after domain SFT works like a better starting point
for speaker SFT in the same domain.

5.1.3 RL Training on TTS

RL training can be employed as an extra post-training stage after either Domain SFT or Speaker
SFT. Both experiments are conducted to verify the effectiveness of RL training, especially on
expressiveness and BCR. To prepare training data for RL, we make a set of good / bad examples
with both subjective ratings and objective metrics. As [46] shows repeated sampling is able to
largely increase the pass coverage to queried problems, we get 5 samples by repeated sampling
for each sentence. For objective ratings, we pick PER and UTMOS [47] as objective metrics to
generate preferences considering both metrics. For subjective ratings, there are 50 human raters being
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participated in to rate the best and the worst sample among 5 candidates by listening and comparing
the overall speech quality. Therefore, a good / bad example pair is acquired for each sentence either
by objective or subjective ratings. As a result, for the RL experiments, 50000-sentence RL pairs are
created for RL training after Domain SFT and 500-sentence RL pairs are prepared for two male and
two female speakers respectively after speaker SFT. The experiments are defined as follows.

• Domain-SFT-RL-OBJ denotes the RL experiments conducted based on the model after
domain SFT by using objective-metric-rating data.

• Domain-Speaker-SFT-RL-OBJ denotes the RL experiments conducted based on the model
after domain and speaker SFT by using objective-metric-rating data.

• Domain-SFT-RL-SUBJ denotes the RL experiments conducted based on the model after
domain SFT by using human-rating data.

• Domain-Speaker-SFT-RL-SUBJ denotes the RL experiments conducted based on the model
after speaker SFT by using human-rating data.

In our experiments, DPO is employed to do RL post training on Domain-SFT-RL and Speaker-SFT-RL
respectively. The Table 3 shows the results comparing models with (w/) or without (w/o) RL training.
To make the result comparable, the four speakers in Speaker TTS Dataset are picked to evaluate
various metrics. The models named with SUBJ suffix are trained with human-rating pairs, the results
of which indicate more stable speech generation in terms of PER and BCR. However there is just
minor improvements on MOS which is more related to expressiveness. That might be due to RL data
raters more sensitive to bad cases comparing to prosody changes.

Table 3: Objective and subject evaluating results of models with and without DPO.
Model PER BCR MOS SIM
Domain-SFT w/o RL 1.91 1.1% 4.23 ± 0.06 0.69
Domain-Speaker-SFT w/o RL 0.89 0.7% 4.46 ± 0.07 0.82
Domain-SFT-RL-SUBJ 1.79 0.9% 4.26 ± 0.07 0.71
Speaker-SFT-RL-SUBJ 0.89 0.4% 4.53 ± 0.09 0.81
Domain-SFT-RL-OBJ 1.89 1.1% 4.22 ± 0.09 0.7
Speaker-SFT-RL-OBJ 0.93 0.6% 4.55 ± 0.11 0.81

The data created by human raters are labour demanded especially for single speaker RL training.
Thus, it is worthy to analyze the utility of pairs generated by using just objective metrics. According
to the evaluation results from Table 3, applying RL training onto the weights in Domain SFT using
data rated by objective metrics do not bring significant improvement. However, we see much larger
improvement from the results of Speaker-SFT-RL-OBJ, though the results do not demonstrate the
same level of improvement as in Speaker-SFT-RL-SUBJ. We further analyze those experimental result
by conducting a consistency analysis over data rated by objective metrics, regarding the human rated
ones as ground truth. We find there is 64% overlap in Speaker RL experiments, while there is only
55% overlap in Domain RL experiments, which is consistent with the experimental results in Table 3
for Domain-SFT-RL-OBJ and Speaker-SFT-RL-OBJ.

5.1.4 Emotion Control Based on Instructions

Data preparation Regarding the textual description, our professional data expert proposes three
dimensions for annotating a voice recording: speaking emotion, speaking state, and speaking rhythm.
Considering the difficulty and accuracy of annotation, the dimension of emotion is more distinctive
compared to the other two dimensions, with the control of the remaining dimensions acting as
supplementary control for the emotional dimension. We have established nine commonly recognized
emotional directions(see in Table4) and then described them using various synonymous natural
language. We have annotated approximately 100 hours of audio data, with each audio clip’s corre-
sponding textual annotation cross-validated by three different experienced data annotators. All these
annotated data are utilized for supervised fine-tuning on a large language model.

Evaluation Metrics The performance of TakinTTS-Instruct compared with TakinTTS-base is shown
in table4 and table5. To evaluate the accuracy of instruction controllability over speech synthesis, we
randomly selected 50 different sentences with a fixed speaker prompt for each emotion, attempting to
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test whether different instructions could achieve the goal of controlling the emotional style of the
synthesized audio. These sample instructions were derived from user inputs, such as: "The speaker
says it with a smile, in a tone that is somewhat familiar and at a fast speed, expressing a pleasant
emotion."

Table 4: Comparison of emotion control accuracy (↑) between Takin-TTS and Takin-TTS-Instruct.
Emotion TakinTTS TakinTTS-Instruct Emotion TakinTTS TakinTTS-Instruct
Admire 0.34±0.05 0.45±0.03 Disgust 0.53±0.06 0.59±0.02

Alert 0.27±0.06 0.35±0.04 Joy 1.00±0.00 1.00±0.00
Anger 0.67±0.03 0.73±0.08 Sad 0.71±0.11 0.85±0.03
Fear 0.55±0.04 0.79±0.02 Surprise 0.25±0.01 0.43±0.02

The research results in Table 4 indicate that TakinTTS-Instruct demonstrates strong controllability
under various command inputs. Compared to the model before instruction finetuning, there is a
significant improvement in the emotion similarity between the prompt and generated speech.

Table 5: Indicator of Instruction control accuracy (↑) between TakinTTS and TakinTTS-Instruct.
System PER(↓) MOS(↑) SIM(↑)

TakinTTS-Instruct 1.9 4.48±0.13 0.78
TakinTTS 1.82 4.46±0.07 0.79

Furthermore, the objective metrics in Table5 displays that the quality of the generated speechs from
TakinTTS-Instruct system are no less than those of the benchmark Takin TTS, and even slightly
outperformed.

5.1.5 Efficient Inference and Serving

To generate speech with superior quality, we use auto-regressive LLMs and diffusion models in Takin,
which are difficult and expensive to deploy. So we use various techniques and tricks to build an
inference service with low latency and high concurrency. Our efforts on TTS task are as follows:
Since most of the computation is spent on LLM model inference, we deploy a separate service for
LLM to maximize GPU utilization and throughput for token prediction. Flash attention[48, 49] and
paged attention[50] techniques are used in the prefill and the decode phases respectively, to reduce
the consumption of memory and computation. Mixed precision and quantization techniques such
as GPTQ[51] and AWQ[52] are also used to achieve further speedup. Besides, we adopt a suite
of kernel-level optimizations, which leverage hardware-specific features and software techniques
to accelerate critical computation kernels. As described above, CSFT strategy is used to improve
the stability of synthesis. But it is not practical to deploy separate inference services for different
domains and speakers. So we support multiple LoRAs in the same service, as well as batch inference
for different LoRAs. Streaming inference is applied to scenarios such as real-time interaction, and
the first packet delay is less than 300 ms.

5.2 Takin VC Experiments

5.2.1 Takin VC Datasets

Training Dataset used in Takin VC training heavily overlaps with the data in the TTS dataset,
including approximately 500,000 hours of web-scraped and internal data.

Test Dataset We random select 100 out-of-set speaker speech data from the Internet. In addition,
these speakers include different attributes such as gender, age, language, and emotion. Each speaker
has about 1 to 3 sentences for different attributes.

5.2.2 Takin VC Performence

As shown in Table 6, our proposed Takin VC scheme surpasses the baseline solution in terms of both
sound quality and speaker similarity. Our experiments were conducted under conditions of large
datasets to ensure the scheme’s effectiveness on a large scale.
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Table 6: Comparison of Takin-VC and baselines.
System PMOS SMOS UTMOS SIM
DiffVC 3.34 ± 0.07 3.45 ± 0.07 3.48 0.61

ValleVC ⋄ 3.48 ± 0.05 3.53 ± 0.08 3.59 0.67
NS2VC 3.31 ± 0.06 3.52 ± 0.07 3.45 0.54

DDDMVC 3.56 ± 0.07 3.61 ± 0.07 3.67 0.69
TakinVC 4.02 ± 0.04 4.07 ± 0.05 4.16 0.80

⋄ stands for utilizing VC models derived from open-source repositories.

5.3 Takin Morphing Experiments

Experimental Datasets We trained Takin Morphing on a substantial corpus consisting of 20,000
hours of multilingual speech recordings in English and Chinese, consisting of in-house dataset
alongside filtered portions of the WenetSpeech [53] and LibriLight [54]. To assess the performance
of the proposed approach, we perform zero-shot speech synthesis and prosody transfer evaluations
using in-house test sets which will be detailed below.

Evaluation Metrics To conduct an in-depth analysis of the proposed Takin Morphing approach,
various objective and subjective metrics are employed. To elaborate, PER and SIM are used as
objective measures as well, while quality mean option score (QMOS) is employed to assess quality,
clarity, naturalness, and high-frequency details, and similarity mean option score (SMOS) is used to
measure speaker similarity with respect to timbre reconstruction and prosodic patterns for subjective
evaluation.

5.3.1 Zero-shot Speech Synthesis

To examine the zero-shot speech synthesis performance of the proposed Takin Morphing, we first
designed two distinct test sets, referred to as the objective and the subjective test sets. The objective
test set includes 2,000 samples each from in-house English (EN) and Mandarin (ZH) speech corpora,
while the latter comprises 200 highly expressive in-house samples in both EN and ZH as well.
Notably, each sample in the subjective test set includes a reference utterance and a target utterance
spoken by the same speaker. During inference, the Takin Morphing System generates speech for the
target text using the reference speech as an audio prompt. The results are presented in Table 7.

Table 7: Zero-shot speech synthesis results of Takin Morphing against real human speech.
Models Language PER SIM QMOS SMOS

GT EN 2.52% 0.834 4.41 ± 0.08 4.28 ± 0.12
Takin Morphing EN 3.14% 0.846 4.09 ± 0.07 4.04 ± 0.06

GT CN 2.16% 0.879 4.43 ± 0.11 4.32 ± 0.09
Takin Morphing CN 3.05% 0.884 4.13 ± 0.09 4.09 ± 0.08

As shown in the table, on both Chinese and English test sets, our proposed Takin Morphing system
achieved a performance level comparable to that of humans in terms of speech naturalness and
speaker similarity. Notably, it slightly underperformed in the PER, QMOS, and SMOS metrics while
achieving a higher score in the SIM metric. This outcome may be attributed to the fact that, even
when both the real and reference speech originate from the same speaker, variations in speaking style,
background environment, and other factors may still exist. In this context, Takin Morphing, when
generating the target speech, accurately captures the fine-grained characteristics of the reference
speech through more sophisticated and advanced timbre modeling, thereby enabling a more consistent
and precise reproduction of the reference speech.

5.3.2 Prosody Transfer

To validate the prosody transfer performance of Takin Morphing, we transfer the styles from our
internal dataset to audio samples from our main platform. Specifically, we randomly select 20
speakers from the main platform and choose 50 sentences for each of them. Subsequently, for each
sentence of the selected speakers, we randomly choose an emotional speech clip from the internal
emotional dataset and use it as the prosodic reference.
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Table 8: Prosody transfer performance of Takin Morphing against real human speech.
Models Language PER SIM QMOS SMOS

GT EN 4.96% 0.823 4.19 ± 0.12 4.21 ± 0.09
Takin Morphing EN 5.32% 0.835 3.94 ± 0.09 3.90 ± 0.07

GT CN 2.99% 0.853 4.21 ± 0.09 4.24 ± 0.11
Takin Morphing CN 3.05% 0.875 3.99 ± 0.06 3.92 ± 0.08

Table 8 presents all results for English (EN) and Chinese (CN), respectively. In terms of the objective
evaluation, we can observe that Tarkin Morphing consistently achieved human-level performance
with similar content recognition accuracy and better SIM score, highlighting the effectiveness of
systematical design of our proposed approach. In subjective tests, Takin Morphing demonstrated a
performance level in both English and Chinese that closely matches real human speech, with QMOS
and SMOS scores both exceeding 3.9, underscoring the effectiveness of the proposed method in
prosody interpolation.

6 Applications

6.1 Audiobook Generation

Takin TTS shows a large superiority comparing to conventional neural speech synthesis methods
[55, 56, 57, 58, 59], which revolutionizes the field of AI audiobook generation. Two distinct
approaches to creating immersive audio experiences using Takin TTS are explored. In the first
approach, purely AI-generated audio content is produced, where different AI-powered voices act as
various characters, bringing the story to life with diverse and nuanced performances. This approach
allows for a consistent and scalable production process, potentially reducing costs and time associated
with traditional audiobook recording. The another approach combines AI and human voices, with
Takin TTS handling narration while human voice actors take on the dialogue parts. This hybrid
approach leverages the efficiency and consistency of AI-generated speech for descriptive passages
while preserving the emotional depth and authenticity that human actors bring to character interactions.
The AI-generated audiobook samples can be listened in our demo page.

6.2 Voice Clone

In recent years, zero-shot timbre cloning technology has achieved significant advancements in voice
cloning and speech synthesis, and is widely used in various fields. In voice assistants and customer
service robots, it provides a more natural interaction experience; in the fields of film and entertainment
content production, it is used for dubbing and creating voices for animated characters; in voice memos
and recordings, it clones the voices of celebrities for future preservation. In music production, it
can mimic the timbre of specific instruments; in education and training, it creates learning materials
with standard pronunciations; in medical and rehabilitation, it helps patients who have lost the ability
to speak regain their voices. Additionally, historical reconstructions and museum exhibits benefit
from this technology. Using Takin VC’s technology, the model requires only a few seconds to tens of
seconds of audio samples to generate high-quality simulated voices, greatly reducing the technical
threshold and making the aforementioned applications possible.

6.3 Talking head

Figure 8: Talking Head Framework
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By integrating LLM-based TTS systems with Portrait Animation technology, we can effortlessly
create an interactive talking head system. The TTS system converts text to speech, while the Portrait
Animation system generates expressive and temporally coherent animations synchronized with the
speech, resulting in a lifelike animated character that communicates naturally and engagingly. The
inference pipeline is illustrated in Figure 8.
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