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ABSTRACT

Zero-shot voice conversion (VC) aims to transform the source speaker timbre into
an arbitrary unseen one without altering the original speech content. While re-
cent advancements in zero-shot VC methods have shown remarkable progress,
there still remains considerable potential for improvement in terms of improving
speaker similarity and speech naturalness. In this paper, we propose Takin-VC,
a novel zero-shot VC framework based on jointly hybrid content and memory-
augmented context-aware timbre modeling to tackle this challenge. Specifically,
an effective hybrid content encoder, guided by neural codec training, that lever-
ages quantized features from pre-trained HybridFormer and WavLM is first pre-
sented to extract the linguistic content of the source speech. Subsequently, we
introduce an advanced cross-attention-based context-aware timbre modeling ap-
proach that learns the fine-grained, semantically associated target timbre features.
To further enhance both speaker similarity and real-time performance, we uti-
lize a conditional flow matching model to reconstruct the Mel-spectrogram of the
source speech. Additionally, we advocate an efficient memory-augmented mod-
ule designed to generate high-quality conditional target inputs for the flow match-
ing process, thereby improving the overall performance of the proposed system.
Experimental results demonstrate that the proposed Takin-VC method surpasses
state-of-the-art zero-shot VC systems, delivering superior performance in terms
of both speech naturalness and speaker similarity.

1 INTRODUCTION

Zero-shot voice conversion (VC) refers to the task of modifying the timbre of a source speech to
match that of a previously unseen speaker, while preserving the original phonetic or linguistic con-
tent. This technology has found broad applications in various practical domains Gan et al. (2022);
Tomashenko et al. (2022); Liu et al. (2021).

In recent times, zero-shot VC has witnessed great progressions, with numerous state-of-the-art
(SOTA) approaches (Li et al., 2023a; Hussain et al., 2023; Choi et al., 2023; Anastassiou et al.,
2024; Li et al., 2024; Luo & Dixon, 2024) exhibiting impressive results in converting natural and
realistic utterances. The key idea behind these methods is to factorize speech into distinct elements,
such as linguistic content and timbre elements, and then leverage the source speech content along-
side the target speaker timbre to synthesize the desired target speech. In this paradigm, the quality
of content and timbre representations, as well as the quality of their disentanglement, significantly
impact their final performance. Consequently, numerous studies have sought to improve VC perfor-
mance by designing more advanced modules (Wu et al., 2020; Wu & Lee, 2020; Tang et al., 2022;
Wang et al., 2021; Yang et al., 2022a; Huang et al., 2023), information disentanglement approaches
(Zhao et al., 2022; Tang et al., 2022; Dang et al., 2022; Yao et al., 2024b) and so forth. However,
achieving high-quality decoupling of utterances into distinct components remains a challenging task
(Pan et al., 2023; 2024a;c; Yao et al., 2024a), and existing zero-shot VC systems still exhibit subpar
performance when handling unseen speakers primarily due to the underlying issues. First, current
methods cannot fully mitigate the influence of source speaker timbre during the extraction of lin-
guistic content features, a problem commonly referred to as ”timbre leakage.” Second, they normally
employ pre-trained speaker-verification (SV) models to capture target timbre features and cast them
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as globally time-invariant representations. However, as highlighted in (Jiang et al., 2024), the timbre
representations may vary with the linguistic content, rendering the performance of these approaches
less optimal. Recently, the advances in large-scale speech language models (Wang et al., 2023c;
Borsos et al., 2023) have tried to tackle this issue by leveraging robust in-context learning capabil-
ities for predicting target speech from concise utterances as prompts. Nevertheless, these methods
may suffer from stability issues and error accumulation due to their auto-regressive nature, which
can gradually degrade conversion quality.

To address the aforementioned limitations, we introduce Takin-VC, an effective VC framework with
advanced modeling of content, timbre and audio quality in a zero-shot fashion. Specifically, we pro-
pose a hybrid content encoder guided by neural codec training that integrates the phonetic posterior-
grams (PPGs) features and quantized self-supervised learning (SSL) representations from two pre-
trained models, i.e., HybridFormer (Yang et al., 2023b) and WavLM (Chen et al., 2022), so as to
precisely capture the linguistic content. For speaker timbre modeling, we first propose a content-
aware timbre modeling method that employs cross-attention (CA) to leverage the target voiceprint
(VP) features extracted from a pre-trained speaker verification (SV) model (Wang et al., 2023b), with
the captured source content. This integration enables our proposed approach to learn target timbre
representations associated with source content. Additionally, to further enhance speaker similarity,
we advocate a memory-augmented module capable of generating high-quality conditional target in-
puts for a conditional flow matching (CFM) model Tong et al. (2023b), ultimately culminating in
the synthesis of the target speech using a pre-trained vocoder (Lee et al., 2022).

To evaluate the performance of the Takin-VC system, we conduct extensive experiments on the both
large-scale 500k-hour multilingual (Mandarin and English) and publicly available LibriTTS Zen
et al. (2019) datasets. Experimental results demonstrate that Takin-VC consistently outperforms
state-of-the-art (SOTA) zero-shot VC methods in terms of both speaker similarity and speech nat-
uralness. Notably, Takin-VC achieves significant improvements in both subjective and objective
metrics compared with all baseline systems, further validating its effectiveness. For more detailed
speech samples, please visit our demo page 1.

In summary, the main contributions of this work are outlined as follows:

• We present Takin-VC, a robust and effective zero-shot VC framework that integrates ad-
vanced modeling capabilities for content, timbre, and speech quality. Takin-VC is capable
of generating semantically coherent target timbre representations for unseen speakers, re-
sulting in improved speaker similarity and enhanced naturalness/intelligibility.

• We introduce a hybrid linguistic content encoder that leverages the PPGs and quantized
SSL features from the pre-trained HybridFormer and WavLM, with the guidance of neural
codec-based training.

• We propose a context-aware timbre modeling approach based on CA to effectively integrate
the source content and target timbre features, bridging the speaker similarity gap between
the target speech and ground truth recording.

• We advocate a memory-augmented module to generate high-quality conditional target in-
puts for the CFM model, further boosting the speaker similarity performance of our pro-
posed method.

2 BACKGROUND

Zero-shot Voice Conversion.

In contrast to previous few-shot Wang et al. (2020); Gabryś et al. (2022) and one-shot Tang et al.
(2022); Li et al. (2023b) VC approaches, zero-shot VC presents a more challenging task, as it re-
quires the model to generalize to unseen speakers without any additional training or fine-tuning. In
recent years, advancements in deep learning techniques, such as SSL speech models and diffusion
models, have led to significant progress in zero-shot VC. SEF-VC Li et al. (2024) learns speaker tim-
bre from reference speech using a CA mechanism and reconstructs waveforms from HuBERT Hsu
et al. (2021) tokens. Choi et al. (2023) introduced Diff-HierVC, a diffusion-based hierarchical VC

1https://anonymous.4open.science/w/takin-vc-0CD8/
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method that uses XLS-R Babu et al. (2021) for content extraction and employs two diffusion mod-
els to generate high-fidelity converted pitch and Mel-spectrograms. The utilization of robust SSL
features, which are rich in phonetic and paralinguistic nuances, has led to improved performance
in these methods compared to prior works Fang et al. (2018); Kaneko et al. (2019). Despite these
impressive results, SSL-based zero-shot VC approaches Dang et al. (2022); Hussain et al. (2023);
Li et al. (2023a) may still encounter the timbre leakage problem, as SSL features do not explic-
itly disentangle timbre information, while diffusion-based VC methods Popov et al. (2021); Choi
et al. (2024) often struggle with poor real-time performance. Another cutting-edge zero-shot VC
paradigm Zhang et al. (2023); Wang et al. (2023c); Baade et al. (2024) involves decoupling speech
into semantic and acoustic tokens using neural codecs (Défossez et al., 2022; Yang et al., 2023a;
Pan et al., 2024b) and SSL speech models Chen et al. (2022); Baevski et al. (2020), subsequently
leveraging language models to generate the converted speech. However, these methods still possess
great potential for improvement regarding speaker similarity and naturalness/intelligibility.

Flow Matching-based Generative Models.

Recently, flow matching-based generative models Lipman et al. (2022); Tong et al. (2023c;a) have
garnered considerable attention in the realm of generative tasks, particularly in the image generation
task Ho et al. (2020); Saharia et al. (2022); Ruiz et al. (2023). These methods focus on approxi-
mating the transport probability path from random noise to the target distribution by estimating the
associated vector field. By employing a neural ordinary differential equation (ODE), these models
learn the optimal transport trajectory and establish a direct link between noise and target samples,
which greatly reduces the required number of sampling steps. In contrast to diffusion-based meth-
ods Bartosh et al. (2023); Zhou et al. (2023); Zheng et al. (2023), flow matching offers improved
training stability and real-time performance.

Influenced by this wave of innovation, the speech processing domain has begun to explore flow
matching-based generative systems as well. For instance, SpeechFlow Liu et al. (2023) leverages a
pre-trained generative model using flow matching and masked conditions on extensive untranscribed
speech data, enabling effective adaptation to various downstream tasks like speech enhancement,
separation, and so forth. ELaTE Kanda et al. (2024) is a zero-shot TTS system that generates
natural laughter by mimicking voice characteristics from an audio prompt and precisely controlling
laughter timing and expression through specific input cues. P-Flow Kim et al. (2024) utilizes speech
prompts for speaker adaptation, integrating a speech-prompted text encoder that generates speaker-
conditional representations with a flow matching generative decoder to achieve high-quality, real-
time speech synthesis. Nevertheless, the application of flow matching in zero-shot voice conversion
(VC) tasks is still in its developmental phase, indicating the urgent need for a stable and efficient
flow matching-based zero-shot VC framework.

3 METHODS

3.1 OVERIVEW

As shown in Fig. 1, our Takin-VC system comprises four components: the hybrid linguistic content
encoder, memory-augmented & context-aware timbre modeling approach, and CFM model.

To elaborate, the hybrid content encoder is designed to precisely capture linguistic content xscont

by leveraging the complementary strengths of PPG and SSL features with the guidance of neural
codec-based training. For timbre modeling, we extract Mel-spectrograms from randomly segmented
reference waveform from the same speaker as the source speech, focusing on learning semantically
correlated target timbre features and conditional target inputs for the CFM model, denoted as xsctt
and xtcond

. In our case, the duration of the reference wav is 4s. This process comprises two main
components: context-aware timbre modeling and memory-augmented timbre modeling. The former
begins by extracting the target VP features using a pre-trained speaker verification model2. These
VP features are then concatenated with the reference Mel-spectrograms to form the key and value
in the CA mechanism, while the attention query is derived from xscont . The latter incorporates a
stack of convolution, activation, and self-attention layers to generate high-quality conditional target

2https://modelscope.cn/models/iic/speech_campplus_sv_zh_en_16k-common_
advanced
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Figure 1: Overview of Takin VC.

inputs xtcond
for the CFM model, which will be detailed below. Finally, we employ a CFM model

to reconstruct the source Mel-spectrograms based on xsctt and xtcond
, followed by employing a

pre-trained Bigvgan vocoder to synthesize the desired target utterance.

3.2 HYBRID LINGUISTIC CONTENT ENCODER

Current zero-shot VC methods typically rely on pre-trained automatic speech recognition (ASR)
Gulati et al. (2020); Yang et al. (2022b); Kim et al. (2022) methods or SSL speech models to extract
linguistic content from the original waveform. Nonetheless, both approaches exhibit their respec-
tive limitations: the PPGs lacks certain essential paralinguistic nuances, while the latter does not
explicitly disentangle timbre information. Therefore, to capture content representations with higher
quality, our Takin-VC combines their merits through a neural codec training guided hybrid linguistic
content encoder, as shown in Fig. 2.

Figure 2: Content Encoder of Takin VC.

Formally, given an input source speech x, the proposed hybrid content encoder first extracts its
corresponding PPG and SSL features, denoted as xppg and xssl, using pre-trained HybridFormer
and WavLM, respectively. For our scenario, the HybridFormer is trained on an in-house multilingual
corpus of Mandarin and English, while the sixth-layer output features of WavLM are selected as xssl

for further processing.
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However, merely relying on the combination of SSL and PPG features is insufficient to achieve
optimal VC performance. To further enhance overall performance and address potential timbre
leakage, we incorporate a neural codec-based training approach Pan et al. (2024b) for end-to-end
training of the proposed hybrid content encoder, as depicted in the left part of Fig. 2. Concretely,
we regard WavLM as the encoder in our neural codec framework and employ a residual vector
quantization-based quantizer like Défossez et al. (2022) to discretize the SSL features. To effectively
leverage the PPGs alongside the quantized SSL features, we introduce a simple yet effective fusion
module designed to adaptively combine these elements. This module comprises Conv1D layers
and ReLU-based gating mechanisms to integrate the SSL and PPG features. The fusion process is
formulated as follows:

xscont
= ReLU⋄ (Conv1d (αssl · V Q(xssl) + αppg · xppg)) (1)

where αssl and αppg are learnable hyperparameters, and VQ denotes the vector quantization opera-
tion, while Conv1d and ReLU⋄(∗) represent the convolution and ReLU operations, respectively.

As a consequence, with the guidance of neural codec training, the quality of the fused hybrid SSL
and PPG features can be significantly enhanced, resulting in improved naturalness and intelligibility
in Takin-VC.

3.3 CONTEXT-AWARE & MEMORY-AUGMENTED TIMBRE MODELING

3.3.1 CONTEXT-AWARE TIMBRE MODELING VIA CROSS-ATTENTION

Current mainstream VC methods typically regard speaker timbre as a global time-invariant represen-
tation (Lin et al., 2021; Li et al., 2024). Nevertheless, recent work (Jiang et al., 2024) has uncovered
a close correlation between timbre modeling and content information.

𝑥!!"#$

Q

MHA Layer
FFN Layer

K/V
𝑥"#$%

Prompt Mel

Prompt Speech

VP Model

extend to

Flow Matching
as condition of 

Context-aware Timbre Modeling via Cross-Attention

Figure 3: The structure of context aware timbre modeling in Takin VC.

Hence, drawing inspiration from this insight, we propose an innovative context-aware timbre mod-
eling approach based on CA. First, we employ a pre-trained SV model to extract a target speaker’s
timbre embedding rather than using a global timbre encoder, and then concatenate it with the shuf-
fled Mel-spectrograms of the target speech, denoted as xttimb

, to minimize the influence of the target
content. Subsequently, to learn semantically correlated timbre features that associate the source con-
tent with the timbre of the target speaker, we introduce an effective CA-based module. This module
takes source content xscont

as the query and xttimb
as both the key and value, consisting of a series

of linear projection, multi-head CA, layer normalization, and position-wise feed-forward networks
(FFN), as detailed in Fig. 3. Finally, we perform interpolation on the extracted features xsctt to en-
sure that their dimensionality corresponds to that of the source Mel-spectrogram, thereby facilitating
the subsequent training of the CFM model.
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Figure 4: The structure of memory-augmented timbre modeling in Takin VC.

3.3.2 MEMORY-AUGMENTED TIMBRE MODELING

Since we use a CFM model to reconstruct the source Mel-spectrograms, obtaining high-quality
conditional target inputs is quite essential, as they provide key guidance for training the CFM model.
To this end, we design an efficient memory-augmented module that adaptively integrates the Mel-
spectrogram and VP features of the reference speech, as outlined in Fig. 4. To be specific, our
proposed memory-augmented module initially use a Conv1d layer to project the xref to a latent
feature space. Subsequently, we incorporate multiple SA blocks, each containing several group
normalization, multi-head SA, and 1D Conv layers, followed by a Conv1d layer and a LeakyReLU
activation layer. This design effectively leverages these features in a stable and learnable manner. At
the end of memory module, we compute the average vector of the obtained representations across
the time dimension to produce the final output xtcond

. Finally, xtcond
is input into the Memory

Fusion Layer (a combination of the Gated Activation Layer and FiLM Layer Perez et al. (2018))
within the flow matching network to reconstruct the Mel-spectrogram.

3.4 CONDITIONAL FLOW MATCHING-BASED DECODER

In Takin-VC, to facilitate more efficient training and faster inference, we leverage a CFM model
with optimal-transport (OT-CFM) to approximate the distribution of source Mel-spectrograms and
generate outputs conditioned on xsctt and xtcond

, all in a simulation-free manner.

Assume that the standard distribution and target distribution are denoted as p0(x) and p1(x), respec-
tively. The OT flow ϕ : [0, 1] × Rd → Rd establishes the mapping between two density functions
through the use of an ordinary differential equation (ODE):

d

dt
ϕt(x) = vt(ϕt(x), t)

ϕ0(x) ∼ p0(x) = N (x; 0, I), ϕ1(x) ∼ p1(x)

(2)

where vt is a learnable time-dependent vector field, and t ∈ [0, 1]. Since multiple flows can generate
this probability path, making it challenging to determine the optimal marginal flow, we adopt a
simplified formulation, as proposed in Tong et al. (2023b):

ϕOT
t,z (x) = µt(z) + σt(z)x

µt(z) = (1−(1−σmin)t)z, σt(z) = t
(3)

where z represents the random variable, σmin is a hyper-parameter set to 0.0001. As a consequence,
the final training objective of the proposed Takin-VC can be formulated as:

6
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Ltakin = Et,p(x0),q(x1)∥((x1 − (1− σ)x0)− vt(ϕ
OT
t,x1

(x0)|θ, h)∥2 (4)

where θ is the weights of the flow matching model, h is the conditional input xtcond
.

4 EXPERIMENTAL SETUP

4.1 BASELINE SYSTEM

We conduct a comparative experiment of the performance in zero-shot voice conversion between
our proposed Takin-VC approach and baseline systems, encompassing the following system:

• DiffVC (Popov et al., 2021): A zero-shot VC system based on diffusion probabilistic mod-
eling, which employs an averaged mel spectrogram aligned with phoneme to disentangle
linguistic content and timbre information.

• NS2VC3: A modified voice conversion edition of NaturalSpeech2 (Shen et al., 2023),
which employ both diffusion and codec model to achieve zero-shot VC.

• VALLE-VC (Wang et al., 2023a): We replace the original phoneme input with the semantic
token extracted from the supervised model to make VALLE convert the timbre of source
speech to the target speaker.

• SEFVC (Li et al., 2024): A speaker embedding free voice conversion model, which is
designed to learn and incorporate speaker timbre from reference speech via a powerful
position-agnostic CA mechanism and then reconstruct waveform from HuBERT semantic
tokens in a non-autoregressive manner.

4.2 EVALUATION METRICS

To evaluate the performance of our proposed Takin-VC and baseline systems, both subjective and
objective metrics are introduced. For subjective metrics, we employ naturalness mean opinion score
(NMOS) to evaluate the naturalness of the generated samples and similarity mean opinion scores
(SMOS) to evaluate the speaker similarity. We invite 20 professional participants to listen to the
generated samples and provide their subjective perception scores on a 5-point scale: ’5’ for excellent,
’4’ for good, ’3’ for fair, ’2’ for poor, and ’1’ for bad. For objective metrics, we employ word error
rate (WER), UTMOS, and speaker embedding cosine similarity (SECS) to evaluate the intelligibility,
quality, and speaker similarity. Specifically: 1) We use a pre-trained CTC-based ASR model4 to
transcribe the generated speech and compare with ground-truth transcription; 2) We use a MOS
prediction system that ranked first in the VoiceMOS Challenge 20225 to estimate the speech quality
of the generated samples; 3) We use the WavLM-TDCNN speaker verification model6 to measure
speaker similarity between generated speech and target speech.

4.3 DATASET

4.3.1 SMALL SCALE DATASET

We employ the LibriTTS dataset to train our system and baseline systems, which contain 585 hours
of recordings from 2,456 English speakers. We follow the official data split, using all training
datasets for model training and ”dev-clean” for model selection. The ”test-clean” dataset is used to
construct the evaluation set. All samples are processed at a 16kHz sampling rate.

3https://github.com/adelacvg/NS2VC
4https://huggingface.co/facebook/hubert-large-ls960-ft
5https://github.com/tarepan/SpeechMOS
6https://github.com/microsoft/UniSpeech/tree/main/downstreams/speaker_

verification
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4.3.2 LARGE SCALE DATASET

To train a robust Takin VC model, we collected a dataset of approximately 500k hours. During
the data collection process, we used an internally constructed data pipeline specifically designed for
audio large model tasks. This pipeline includes signal-to-noise ratio (SNR) filtering, audio spectrum
filtering (filtering out 24k audio with insufficient high-frequency information and pseudo 24k audio),
VAD (Voice Activity Detection), LiD+ASR (Language Identification + Automatic Speech Recogni-
tion), speaker separation and identification, punctuation prediction, and background noise filtering.
Regarding the test set, to validate the effectiveness of the Takin-VC model, we collected speech
data from the internet that includes 100 non-preset speakers for evaluation. These speakers repre-
sent a variety of attributes such as gender, age, language, and emotion to ensure a comprehensive
evaluation of the model’s performance.

4.4 MODEL CONFIGURATION

For the content encoder part, in the first stage, we used the 12-layer HybridFormer-base model
trained on a large dataset of 500K hours. For the wavlm part, we used the output features of the 6th
layer. In the VQ part, we adopted a single-layer 8200 codebook with a hidden dimension of 1024,
trained for 1 million steps on 100K hours of data. The fusion layer, as described in Sec. 3.2, is a
simple process of conv1d, activation layer, and weighted summation. The Decoder adopts the same
structure and configuration as Hificodec Yang et al. (2023a).

In the part of timbre modeling and flow matching restoration, both the context-aware timbre module
and the memory module use a transformer layer with 8 heads, 6 layers, and a hidden size of 1024,
with only the form of attention being different. The main structure of flow matching uses a design
of 10-layer Unet plus 3 layers of resblock, with a hidden size of 1280. A Memory Fusion Block is
inserted into the 10-layer Unet to enhance the timbral similarity of the generated audio.

For the small-data experiments, we used four A800 GPUs, whereas the large-data experiments were
conducted on eight A800 servers. The batch size on each card was set to 16, and the AdamW
learning rate was set to 1e-4. In the inference section, experiments typically took 15 to 50 steps,
with the final table uniformly adopting the results of 50 steps. The Classifier-Free Guidance (CFG)
coefficient ranged from 0.1 to 1.0, with 0.7 used in the table. The specific experimental results will
be detailed later.

5 EXPERIMENTAL RESULTS

5.1 EXPERIMENTS ON SMALL DATASET

We first evaluate the performance of our proposed Takin-VC using subjective metrics. These metrics
capture human perception of the enhanced speech’s naturalness, intelligibility, and speaker similar-
ity. As shown in Table 1, we can find that 1) our proposed system achieves the highest NMOS of
3.98, which is significantly higher than baseline systems; 2) the speaker similarity of our proposed
system also outperforms all baseline systems. These results demonstrate that Takin-VC can achieve
superior performance than the baseline system in the perceived aspect.

Table 1: Comparison results of subjective and objective metrics between Takin-VC and the baseline
systems in zero-shot voice conversion. Subjective metrics are computed with 95% confidence inter-
vals and “GT” refers to ground truth samples.

NMOS (↑) SMOS (↑) WER (↓) UTMOS (↑) SECS (↑)
GT 4.17±0.04 - 2.04 4.21 -
DiffVC 3.75±0.05 3.66±0.07 3.08 3.68 0.61
NS2VC 3.65±0.07 3.51±0.06 2.94 3.64 0.53
VALLE-VC 3.80±0.06 3.79±0.04 2.77 3.72 0.65
SEFVC 3.68±0.05 3.76±0.06 3.75 3.51 0.63
Takin-VC 3.98±0.04 4.11±0.05 2.35 4.08 0.71

8
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Furthermore, we evaluate the performance using objective metrics. The WER of our proposed sys-
tem is 2.35, only slightly higher than the ground truth samples, indicating that the samples generated
by Takin-VC exhibit better intelligibility. Moreover, Takin-VC achieves a UTMOS of 4.08 and an
SECS of 0.71, demonstrating superior quality and similarity performance. Overall, the objective
results of our proposed Takin-VC outperform all baseline systems and further corroborate the sub-
jective findings.

5.2 EXPERIMENTS ON LARGE DATASET

We employ the large scale dataset to train our proposed Takin-VC and investigate the performance
in different conversion scenarios across different gender. As shown in Table 2, we divide the ex-
periments into four groups: female to female (F2F), female to male (F2M), male to male (M2M),
and male to female (M2F) to investigate performance differences. The results show that all metrics
outperform Takin-VC trained on a smaller dataset, demonstrating that our proposed approach scales
effectively. Additionally, the conversion results for same-gender conversions are slightly better than
cross-gender conversions in both SMOS and SECS, while other metrics remain similar across all
four group settings.

Table 2: Detailed results of Takin-VC on different conversion scenarios. “F” and “M” represent the
female and male, respectively.

NMOS (↑) SMOS (↑) WER (↓) UTMOS (↑) SECS (↑)
GT 4.21±0.05 - 2.11 4.18 -
F2F 4.16±0.04 4.18±0.03 2.11 4.11 0.74
F2M 4.14±0.05 4.09±0.05 2.24 4.13 0.71
M2M 4.12±0.04 4.11±0.04 2.20 4.20 0.73
M2F 4.13±0.05 4.04±0.06 2.31 4.09 0.70

To further investigate the speaker similarity performance of our Takin-VC, we use the t-SNE
method (Van der Maaten & Hinton, 2008) to visualize the speaker embeddings of 13 speakers,
comparing the ground truth samples with the converted samples generated by Takin-VC. As shown
in Figure 5, the embeddings of real and converted speech from the same speaker are closely clus-
tered. This demonstrates that the speech generated by Takin-VC closely matches real human speech
in both quality and speaker similarity.

Figure 5: The t-SNE result of speaker similarity between ground truth samples and converted speech.
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5.3 ABLATION STUDY

We conduct ablation experiments to evaluate the effectiveness of each component in our proposed
system for generating natural-sounding samples and accurate timbre modeling. As shown in Table
3, NMOS and WER results degrade when we replace the proposed hybrid content encoder with
a conventional ASR encoder. This suggests that the conventional ASR encoder is less capable of
disentangling linguistic content from the necessary paralinguistic information, underscoring the im-
portance and effectiveness of our hybrid encoder in extracting linguistic content. Additionally, we
observe a notable decline in speaker similarity when the voice print is removed from the attention
module. We believe the voice print introduces a stronger timbre bias, which helps the attention
module focus on capturing timbre information. Furthermore, when we remove the memory module,
SMOS and SECS scores show significant degradation compared to the original Takin-VC, demon-
strating the critical role of the memory module in improving timbre modeling. These ablation results
demonstrate the effectiveness of each component proposed in our Takin-VC.

Table 3: Experimental results on ablation studies. “w/o vp” represents removing voice print in the
attention module. “w/o hybrid” represents replacing the proposed hybrid content encoder with the
conventional used ASR encoder, and “w/o memory” means removing the timbre memory module.

NMOS (↑) SMOS (↑) WER (↓) UTMOS (↑) SECS (↑)
Takin-VC 3.98±0.04 4.11±0.05 2.35 4.08 0.71

w/o hybrid 3.67±0.04 4.01±0.04 2.79 3.89 0.66
w/o vp 3.94±0.05 3.89±0.04 2.51 3.98 0.61
w/o memory 3.92±0.04 3.75±0.05 2.44 4.01 0.52

6 DISCUSSION AND LIMITATIONS

Takin is an effective and data-efficient zero-shot VC system that achieves comparable naturalness
and speaker adaptation performance to its large-scale, autoregressive counterparts. The core of this
approach lies in the neural codec training based hybrid linguistic content encoder, which captures
high-quality speaker-agnostic content representations, and the introduction of both context-aware
timbre modeling and memory-augmented modules to enhance speaker similarity performance. In
many ways, our work provides a strong foundation for future studies, as we demonstrate that state-
of-the-art performance in this task can be achieved without relying on complex training setups,
representation quantization steps, or costly autoregressive models.

This work primarily focuses on zero-shot capabilities for speech generation, while zero-shot ca-
pabilities for speech editing remain limited and are a subject for future exploration. Additionally,
while high-quality zero-shot VC has great potential, it can also lead to negative social impacts, such
as voice impersonation of public figures and non-consenting individuals. We highlight this as a
potential misuse of the technology to raise awareness of its ethical implications.

7 CONCLUSIONS

In this study, we propose a novel framework called Takin-VC, designed to achieve high quality and
similarity in zero-shot VC. We introduce an effective neural codec training guided hybrid content en-
coder that leverages quantized features from both pre-trained HybridFormer and WavLM to extract
the linguistic content of the source speech. This hybrid content encoder improves the naturalness
and intelligibility of the converted speech. Additionally, we present an advanced cross-attention-
based, context-aware timbre modeling approach that captures fine-grained, semantically associated
target timbre features. Furthermore, we employ a conditional flow-matching model to efficiently
reconstruct the Mel-spectrogram of the source speech and propose an efficient memory-augmented
module for the flow-matching process, enhancing the overall performance of the generated samples.
Experimental results demonstrate that Takin-VC outperforms all baseline systems in naturalness and
speaker similarity on benchmark datasets. Ablation studies also confirm the effectiveness of each
component in our approach.
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Adam Gabryś, Goeric Huybrechts, Manuel Sam Ribeiro, Chung-Ming Chien, Julian Roth, Giulia
Comini, Roberto Barra-Chicote, Bartek Perz, and Jaime Lorenzo-Trueba. Voice filter: Few-
shot text-to-speech speaker adaptation using voice conversion as a post-processing module. In
ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 7902–7906. IEEE, 2022.

Wendong Gan, Bolong Wen, Ying Yan, Haitao Chen, Zhichao Wang, Hongqiang Du, Lei Xie, Kaix-
uan Guo, and Hai Li. Iqdubbing: Prosody modeling based on discrete self-supervised speech
representation for expressive voice conversion. arXiv preprint arXiv:2201.00269, 2022.

Anmol Gulati, James Qin, Chung-Cheng Chiu, Niki Parmar, Yu Zhang, Jiahui Yu, Wei Han, Shibo
Wang, Zhengdong Zhang, Yonghui Wu, et al. Conformer: Convolution-augmented transformer
for speech recognition. arXiv preprint arXiv:2005.08100, 2020.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov,
and Abdelrahman Mohamed. Hubert: Self-supervised speech representation learning by masked
prediction of hidden units. IEEE/ACM transactions on audio, speech, and language processing,
29:3451–3460, 2021.

Liangjie Huang, Tian Yuan, Yunming Liang, Zeyu Chen, Can Wen, Yanlu Xie, Jinsong Zhang,
and Dengfeng Ke. Limi-vc: A light weight voice conversion model with mutual information
disentanglement. In ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pp. 1–5. IEEE, 2023.

Shehzeen Hussain, Paarth Neekhara, Jocelyn Huang, Jason Li, and Boris Ginsburg. Ace-vc: Adap-
tive and controllable voice conversion using explicitly disentangled self-supervised speech rep-
resentations. In ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 1–5, 2023.

Ziyue Jiang, Jinglin Liu, Yi Ren, Jinzheng He, Zhenhui Ye, Shengpeng Ji, Qian Yang, Chen Zhang,
Pengfei Wei, Chunfeng Wang, et al. Mega-tts 2: Boosting prompting mechanisms for zero-shot
speech synthesis. In The Twelfth International Conference on Learning Representations, 2024.

Naoyuki Kanda, Xiaofei Wang, Sefik Emre Eskimez, Manthan Thakker, Hemin Yang, Zirun Zhu,
Min Tang, Canrun Li, Steven Tsai, Zhen Xiao, et al. Making flow-matching-based zero-shot
text-to-speech laugh as you like. arXiv preprint arXiv:2402.07383, 2024.

Takuhiro Kaneko, Hirokazu Kameoka, Kou Tanaka, and Nobukatsu Hojo. Cyclegan-vc2: Improved
cyclegan-based non-parallel voice conversion. In ICASSP 2019-2019 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP), pp. 6820–6824. IEEE, 2019.

Sehoon Kim, Amir Gholami, Albert Shaw, Nicholas Lee, Karttikeya Mangalam, Jitendra Malik,
Michael W Mahoney, and Kurt Keutzer. Squeezeformer: An efficient transformer for automatic
speech recognition. Advances in Neural Information Processing Systems, 35:9361–9373, 2022.

Sungwon Kim, Kevin Shih, Joao Felipe Santos, Evelina Bakhturina, Mikyas Desta, Rafael Valle,
Sungroh Yoon, Bryan Catanzaro, et al. P-flow: a fast and data-efficient zero-shot tts through
speech prompting. Advances in Neural Information Processing Systems, 36, 2024.

Sang-gil Lee, Wei Ping, Boris Ginsburg, Bryan Catanzaro, and Sungroh Yoon. Bigvgan: A universal
neural vocoder with large-scale training. arXiv preprint arXiv:2206.04658, 2022.

Dayong Li, Xian Li, and Xiaofei Li. Dvqvc: An unsupervised zero-shot voice conversion frame-
work. In ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 1–5. IEEE, 2023a.

Jingyi Li, Weiping Tu, and Li Xiao. Freevc: Towards high-quality text-free one-shot voice con-
version. In ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 1–5. IEEE, 2023b.

Junjie Li, Yiwei Guo, Xie Chen, and Kai Yu. Sef-vc: Speaker embedding free zero-shot voice con-
version with cross attention. In ICASSP 2024-2024 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 12296–12300. IEEE, 2024.

Jheng-hao Lin, Yist Y Lin, Chung-Ming Chien, and Hung-yi Lee. S2vc: A framework for
any-to-any voice conversion with self-supervised pretrained representations. arXiv preprint
arXiv:2104.02901, 2021.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
for generative modeling. arXiv preprint arXiv:2210.02747, 2022.

Alexander H Liu, Matt Le, Apoorv Vyas, Bowen Shi, Andros Tjandra, and Wei-Ning Hsu. Genera-
tive pre-training for speech with flow matching. arXiv preprint arXiv:2310.16338, 2023.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Songxiang Liu, Yuewen Cao, Disong Wang, Xixin Wu, Xunying Liu, and Helen Meng. Any-to-
many voice conversion with location-relative sequence-to-sequence modeling. IEEE/ACM Trans-
actions on Audio, Speech, and Language Processing, 29:1717–1728, 2021.

Yin-Jyun Luo and Simon Dixon. Posterior variance-parameterised gaussian dropout: Improving dis-
entangled sequential autoencoders for zero-shot voice conversion. In ICASSP 2024-2024 IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 11676–11680.
IEEE, 2024.

Yu Pan, Yuguang Yang, Yuheng Huang, Jixun Yao, Jingjing Yin, Yanni Hu, Heng Lu, Lei Ma,
and Jianjun Zhao. Msac: Multiple speech attribute control method for reliable speech emotion
recognition. arXiv preprint arXiv:2308.04025, 2023.

Yu Pan, Yanni Hu, Yuguang Yang, Wen Fei, Jixun Yao, Heng Lu, Lei Ma, and Jianjun Zhao. Gemo-
clap: Gender-attribute-enhanced contrastive language-audio pretraining for accurate speech emo-
tion recognition. In ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 10021–10025. IEEE, 2024a.

Yu Pan, Lei Ma, and Jianjun Zhao. Promptcodec: High-fidelity neural speech codec using disen-
tangled representation learning based adaptive feature-aware prompt encoders. arXiv preprint
arXiv:2404.02702, 2024b.

Yu Pan, Yuguang Yang, Heng Lu, Lei Ma, and Jianjun Zhao. Gmp-atl: Gender-augmented multi-
scale pseudo-label enhanced adaptive transfer learning for speech emotion recognition via hubert.
arXiv preprint arXiv:2405.02151, 2024c.

Ethan Perez, Florian Strub, Harm De Vries, Vincent Dumoulin, and Aaron Courville. Film: Visual
reasoning with a general conditioning layer. In Proceedings of the AAAI conference on artificial
intelligence, volume 32, 2018.

Vadim Popov, Ivan Vovk, Vladimir Gogoryan, Tasnima Sadekova, Mikhail Kudinov, and Jiansheng
Wei. Diffusion-based voice conversion with fast maximum likelihood sampling scheme. arXiv
preprint arXiv:2109.13821, 2021.

Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman.
Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation. In Pro-
ceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 22500–
22510, 2023.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic
text-to-image diffusion models with deep language understanding. Advances in neural informa-
tion processing systems, 35:36479–36494, 2022.

Kai Shen, Zeqian Ju, Xu Tan, Yanqing Liu, Yichong Leng, Lei He, Tao Qin, Sheng Zhao, and Jiang
Bian. Naturalspeech 2: Latent diffusion models are natural and zero-shot speech and singing
synthesizers. arXiv preprint arXiv:2304.09116, 2023.

Huaizhen Tang, Xulong Zhang, Jianzong Wang, Ning Cheng, and Jing Xiao. Avqvc: One-shot voice
conversion by vector quantization with applying contrastive learning. In ICASSP 2022-2022 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4613–4617.
IEEE, 2022.

Natalia Tomashenko, Xin Wang, Emmanuel Vincent, Jose Patino, Brij Mohan Lal Srivastava, Paul-
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